1,292 research outputs found

    Evaluation of a self-equilibrium cutting strategy for the contour method of residual stress measurement

    Get PDF
    An assessment of cutting-induced plasticity (CIP) is performed, by finite element (FE) prediction of the plastic strain accumulation along the cut tip when the EDM wire sections the NeT TG4 weld benchmark specimen along two cutting directions. The first direction corresponds to a conventional (C) cutting strategy, whereby the EDM wire cuts through the thickness of the weld specimen and travels in a direction transverse to the weld. The second direction corresponds to a self-equilibrating cutting (SE) strategy, whereby the EDM wire cuts across the transverse direction of the weld specimens and travels through the thickness of the plate. The cutting thus progresses simultaneously through the compression-tension-compression regions of present weld residual stress (WRS) field. This type of cutting strategy is believed to minimize the CIP by minimising residual stress redistribution during cutting, due to stress equilibration across the sectioned material. The simulated cutting procedures are conducted under a range of clamping conditions to assess whether mechanical restraint has a primary or secondary influence on CIP accumulation. Both predictions of CIP and the resultant back-calculated WRS demonstrate that (i) mechanical restraint is the primary variable influencing CIP development, and (ii) under no circumstance does a self-equilibrating cutting strategy perform significantly better than a conventional cutting approach. The reason that self-equilibrating cuts are not effective is illustrated by calculating the Mode I (KI) stress intensity factor (SIF) along the cut tip, and correlating trends in KI to CIP development

    Determining species tree topologies from clade probabilities under the coalescent

    Full text link
    One approach to estimating a species tree from a collection of gene trees is to first estimate probabilities of clades from the gene trees, and then to construct the species tree from the estimated clade probabilities. While a greedy consensus algorithm, which consecutively accepts the most probable clades compatible with previously accepted clades, can be used for this second stage, this method is known to be statistically inconsistent under the multispecies coalescent model. This raises the question of whether it is theoretically possible to reconstruct the species tree from known probabilities of clades on gene trees. We investigate clade probabilities arising from the multispecies coalescent model, with an eye toward identifying features of the species tree. Clades on gene trees with probability greater than 1/3 are shown to reflect clades on the species tree, while those with smaller probabilities may not. Linear invariants of clade probabilities are studied both computationally and theoretically, with certain linear invariants giving insight into the clade structure of the species tree. For species trees with generic edge lengths, these invariants can be used to identify the species tree topology. These theoretical results both confirm that clade probabilities contain full information on the species tree topology and suggest future directions of study for developing statistically consistent inference methods from clade frequencies on gene trees.Comment: 25 pages, 2 figure

    Progressive changes in magma transport at the active Serreta Ridge, Azores

    Get PDF
    Volcanism in the Eastern Azores Plateau occurs at large central volcanoes and along subaerial and submarine fissure zones, resulting from a mantle melting anomaly combined with transtensional stresses. Volcanic structures are aligned WNW-ESE and NW-SE, reflecting two tectonic stress fields that control the direction of lateral melt transport. Terceira Island is influenced by both stress fields, dividing the island into an eastern and western part. Several submarine volcanic ridges with variable orientations are located west of Santa Barbara, the youngest central volcano on Terceira. Major, trace element and Sr-Nd-Pb-Hf isotope compositions from submarine lavas and glasses, in part associated with the 1998-2001 Serreta Ridge eruption, vary between different lava suites, suggesting a formation from different mantle sources. Submarine lavas are more primitive than those from Santa Barbara volcano, indicating that they are not laterally connected with the shallow magma reservoir located in 2- to 5-km depth beneath the central volcano. Mineral thermobarometric data suggest that the older Serreta magmas were laterally transported at depths >5 km from Santa Barbara predominantly in WNW direction. We propose that lithospheric extension controls magma transport from the central volcano to Serreta Ridge. The youngest Serreta lavas differ from Santa Barbara and other submarine ridges in having less radiogenic Pb and higher Hf isotope ratios representing a new magma pulse ascending from the mantle. We conclude that lateral magma transport and the morphology of volcanic ridges are controlled by tectonic stresses in the lithosphere, whereas vertical melt transport is initiated by processes in the mantle.Peer reviewe

    An Optimized Pentaplex PCR for Detecting DNA Mismatch Repair-Deficient Colorectal Cancers

    Get PDF
    Microsatellite instability (MSI) is used to screen colorectal cancers (CRC) for Lynch Syndrome, and to predict outcome and response to treatment. The current technique for measuring MSI requires DNA from normal and neoplastic tissues, and fails to identify tumors with specific DNA mismatch repair (MMR) defects. We tested a panel of five quasi-monomorphic mononucleotide repeat markers amplified in a single multiplex PCR reaction (pentaplex PCR) to detect MSI.We investigated a cohort of 213 CRC patients, comprised of 114 MMR-deficient and 99 MMR-proficient tumors. Immunohistochemical (IHC) analysis evaluated the expression of MLH1, MSH2, PMS2 and MSH6. MSI status was defined by differences in the quasi-monomorphic variation range (QMVR) from a pool of normal DNA samples, and measuring differences in allele lengths in tumor DNA.Amplification of 426 normal alleles allowed optimization of the QMVR at each marker, and eliminated the requirement for matched reference DNA to define MSI in each sample. Using ≥2/5 unstable markers as the criteria for MSI resulted in a sensitivity of 95.6% (95% CI = 90.1–98.1%) and a positive predictive value of 100% (95% CI = 96.6%–100%). Detection of MSH6-deficiency was limited using all techniques. Data analysis with a three-marker panel (BAT26, NR21 and NR27) was comparable in sensitivity (97.4%) and positive predictive value (96.5%) to the five marker panel. Both approaches were superior to the standard approach to measuring MSI.An optimized pentaplex (or triplex) PCR offers a facile, robust, very inexpensive, highly sensitive, and specific assay for the identification of MSI in CRC

    Sr-Nd-Hf isotopes along the Pacific Antarctic Ridge from 41 to 53°S

    Get PDF
    International audienceMajor, trace element and Sr-Nd-Hf isotope data in basalts collected along the Pacific-Antarctic Ridge (PAR) axis between 53 and 41°S, far from any hotspot influence, reveal tight coherent geochemical variations within the depleted MORB mantle. All samples are located below the Pacific reference line defining two sub-oceanic mantle domains on each side of the Easter microplate. The data extend the PAR 66-53°S field towards more radiogenic Sr (0.70264), less radiogenic Nd (ɛ = 7.7) and Hf (ɛ = 11.4) values. The along ridge geochemical variability is closely related to the morphological segmentation of the ridge. Anomalous geochemical features are attributed to the atypical morphology of two segments due to the presence of off-axis magmatism. The first order ridge discontinuity defined by the Menard transform fault separates two slightly different mantle domains, each with its own history

    STS-99 Shuttle Radar Topography Mission Stability and Control

    Get PDF
    The Shuttle Radar Topography Mission (SRTM) flew aboard Space Shuttle Endeavor February 2000 and used interferometry to map 80% of the Earth's landmass. SRTM employed a 200-foot deployable mast structure to extend a second antenna away from the main antenna located in the Shuttle payload bay. Mapping requirements demanded precision pointing and orbital trajectories from the Shuttle on-orbit Flight Control System (PCS). Mast structural dynamics interaction with the FCS impacted stability and performance of the autopilot for attitude maneuvers and pointing during mapping operations. A damper system added to ensure that mast tip motion remained with in the limits of the outboard antenna tracking system while mapping also helped to mitigate structural dynamic interaction with the FCS autopilot. Late changes made to the payload damper system, which actually failed on-orbit, required a redesign and verification of the FCS autopilot filtering schemes necessary to ensure rotational control stability. In-flight measurements using three sensors were used to validate models and gauge the accuracy and robustness of the pre-mission notch filter design

    Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of <it>Plasmodium falciparum </it>CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2.</p> <p>Results</p> <p>We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.</p

    Reef response to sea-level and environmental changes during the last deglaciation: Integrated Ocean Drilling Program Expedition 310, Tahiti Sea Level

    Get PDF
    The last deglaciation is characterized by a rapid sea-level rise and coeval abrupt environmental changes. The Barbados coral reef record suggests that this period has been punctuated by two brief intervals of accelerated melting (meltwater pulses, MWP), occurring at 14.08-13.61 ka and 11.4-11.1 ka (calendar years before present), that are superimposed on a smooth and continuous rise of sea level. Although their timing, magnitude, and even existence have been debated, those catastrophic sea-level rises are thought to have induced distinct reef drowning events. The reef response to sea-level and environmental changes during the last deglacial sea-level rise at Tahiti is reconstructed based on a chronological, sedimentological, and paleobiological study of cores drilled through the relict reef features on the modern forereef slopes during the Integrated Ocean Drilling Program Expedition 310, complemented by results on previous cores drilled through the Papeete reef. Reefs accreted continuously between 16 and 10 ka, mostly through aggradational processes, at growth rates averaging 10 mm yr-1. No cessation of reef growth, even temporary, has been evidenced during this period at Tahiti. Changes in the composition of coralgal assemblages coincide with abrupt variations in reef growth rates and characterize the response of the upward-growing reef pile to nonmonotonous sea-level rise and coeval environmental changes. The sea-level jump during MWP 1A, 16 ± 2 m of magnitude in ~350 yr, induced the retrogradation of shallow-water coral assemblages, gradual deepening, and incipient reef drowning. The Tahiti reef record does not support the occurrence of an abrupt reef drowning event coinciding with a sea-level pulse of ~15 m, and implies an apparent rise of 40 mm yr-1 during the time interval corresponding to MWP 1B at Barbados. © 2012 Geological Society of America
    corecore